skip to main content


Search for: All records

Creators/Authors contains: "Amara, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope’s Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond. 
    more » « less
  3. null (Ed.)
    ABSTRACT For ground-based optical imaging with current CCD technology, the Poisson fluctuations in source and sky background photon arrivals dominate the noise budget and are readily estimated. Another component of noise, however, is the signal from the undetected population of stars and galaxies. Using injection of artifical galaxies into images, we demonstrate that the measured variance of galaxy moments (used for weak gravitational lensing measurements) in Dark Energy Survey (DES) images is significantly in excess of the Poisson predictions, by up to 30 per cent, and that the background sky levels are overestimated by current software. By cross-correlating distinct images of ‘empty’ sky regions, we establish that there is a significant image noise contribution from undetected static sources (US), which, on average, are mildly resolved at DES resolution. Treating these US as a stationary noise source, we compute a correction to the moment covariance matrix expected from Poisson noise. The corrected covariance matrix matches the moment variances measured on the injected DES images to within 5 per cent. Thus, we have an empirical method to statistically account for US in weak lensing measurements, rather than requiring extremely deep sky simulations. We also find that local sky determinations can remove most of the bias in flux measurements, at a small penalty in additional, but quantifiable, noise. 
    more » « less
  4. null (Ed.)
    ABSTRACT Determining the distribution of redshifts of galaxies observed by wide-field photometric experiments like the Dark Energy Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak Lensing Source Catalogue to four tomographic bins and to estimate the redshift distributions in these bins. As the first application of these methods to data, we validate that the assumptions made apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematic uncertainties. Our method consists of combining information from three independent likelihood functions: self-organizing map p(z) (sompz), a method for constraining redshifts from galaxy photometry; clustering redshifts (WZ), constraints on redshifts from cross-correlations of galaxy density functions; and shear ratios (SRs), which provide constraints on redshifts from the ratios of the galaxy-shear correlation functions at small scales. Finally, we describe how these independent probes are combined to yield an ensemble of redshift distributions encapsulating our full uncertainty. We calibrate redshifts with combined effective uncertainties of σ〈z〉 ∼ 0.01 on the mean redshift in each tomographic bin. 
    more » « less
  5. null (Ed.)
  6. ABSTRACT

    The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the framework of modified gravity. We utilize the angular clustering of the DMASS galaxies, cosmic shear of the DES metacalibration sources, and cross-correlation of the two as data vectors. By jointly fitting the combination of the data with the RSD measurements from the CMASS sample and Planck data, we obtain the constraints on modified gravity parameters $\mu _0=-0.37^{+0.47}_{-0.45}$ and $\Sigma _0=0.078^{+0.078}_{-0.082}$. Our constraints of modified gravity with DMASS are tighter than those with the DES Year 1 redMaGiC sample with the same external data sets by 29 per cent for μ0 and 21 per cent for Σ0, and comparable to the published results of the DES Year 1 modified gravity analysis despite this work using fewer external data sets. This improvement is mainly because the galaxy bias parameter is shared and more tightly constrained by both CMASS and DMASS, effectively breaking the degeneracy between the galaxy bias and other cosmological parameters. Such an approach to optimally combine photometric and spectroscopic surveys using a photometric sample equivalent to a spectroscopic sample can be applied to combining future surveys having a limited overlap such as DESI and LSST.

     
    more » « less